
BGS SCIENCE ACADEMY & RESEARCH CENTER Agalagurki, Chikkaballapura

V Semester B.Sc., Paper-V Organic Chemistry Laboratory Manual

SYSTEMATIC IDENTIFICATION OF ORGANIC COMPOUNDS

The systematic analysis of organic compounds involves the following steps.

- I. Preliminary observations
- II. Determination of physical constants such as melting points/boiling points
- III. Detection of elements (Nitrogen, Halogens and Sulphur)
- IV. Determination of solubility
- V. Functional group tests
- VI. Preparation of a suitable solid derivative

I. Preliminary observations

- State:
 Solid (amides, carbohydrates, carboxylic acids etc.)

 Liquid: (alcohols, aldehydes, ketones, esters, amines etc.)

 Calour:
 Vallacy (nitro compounds)
- Colour: Yellow (nitro compounds)

Brown to black amines and phenols)

Colourless (alcohols, aldehydes, ketones, acids, esters, amides etc).

Odour: Pleasant (alcohols, halogenated hydrocarbons)

Fruity (esters) *Fishy* (amines)

Fishy (amines)

Bitter almonds (benzaldehyde and nitrobenzene)

Experiment	Observation	Inference
Ignition test:	The compound burns with sooty	The compound is aromatic.
Ignite a pinch of solid or a drop	flame.	
of a liquid on a nickel spatula.	The compound burns and chars	Compound may be carbohydrate.
	with the smell of burnt sugar.	
	The compound does not burn but	May be urea.
	crackles leaving behind a white	
	residue.	
Test for unsaturation:	Pink colour is discharged.	The compound is unsaturated or
Bayer's test: Few crystals or 2		reactive or easily oxidisable.
drops of the compound+ KMnO ₄	Pink colour is not discharged.	The compound is saturated or
solution. Shake well.		less reactive or not easily
		oxidisable.
Compound + 2 or 3 drops of	Orange red colour is discharged	Compound is unsaturated or
bromine water. Shake well.	Orange red colour is not	reactive or easily oxidisable.
	discharged.	Compound is saturated or less
		reactive or not easily oxidisable.

II. Determination of physical constants

If the given compound is a solid, determine the melting point. Note down the temperature when the substance in the capillary tube has just melted.

If the compound is a liquid, determine the boiling point.

Correct boiling point = Observed boiling point + 3% correction.

III. Detection of elements: Lassaigne's test

Take a small piece of sodium metal in a sodium fusion tube. Warm the tube till the metal melts into silvery white. Cool the tube and add a pinch of the compound if it is a solid or a drop if it is a liquid. Heat the tube gently till it becomes red hot. Plunge it into about 5 ml of distilled water taken in mortar. Add two more such fusions into the same mortar. Grind the contents thoroughly with pestle. Transfer the contents into a small beaker. Heat nearly to boiling and filter. The filtrate is called *stock solution or sodium fusion extract*.

Experiment	Observation	Inference
crystals of FeSO ₄ , boil, cool.	A blue or bluish green colouration.	Nitrogen is present.
Acidify with dil. H ₂ SO ₄ . Test for halogens: 1 ml of stock solution + 1ml of	White precipitate soluble in excess of NH ₄ OH.	Chlorine is present.
conc. HNO ₃ , boil, cool and add AgNO ₃ solution.	A pale yellow precipitate soluble in excess of NH ₄ OH.	-
Doilatoin's tost.	No precipitate.	Halogens are absent.
Beilstein's test: Hold a copper wire in a non- luminous Bunsen flame until it does not impart colour to the flame. Cool, dip it in the liquid and ignite again.	Green or bluish green edged flame.	Halogen is present in the compound.
Test for sulphur: (a). 1 ml stock solution + dil. acetic acid + lead acetate solution	Black precipitate.	Sulphur is present.
(b). 1 ml stock solution + 2 or 3 drops of sodium nitroprusside solution.	Purple or violet coloured solution	Sulphur is present.

IV. Determination of solubility

The solubility of an organic compound in a solvent is determined to find out to the correct group the compound belongs. For this purpose different solvents such as water, ether, dil. HCl, 5% NaOH solution and conc. H_2SO_4 are used and the solubility is determined. This gives the group and the probable functional groups of organic compound belonging to that group.

In order to determine the solubility, about 2 ml of the solvent is taken in a test tube and a pinch of the given solid or 2 or 3 drops of the given liquid is added and shaken well. If a homogenous solution is formed with or without change of colour then the compound is soluble. The formation of a precipitate also indicates the solubility. (ex. Benzyl alcohol mixed with conc. H_2SO_4). If oily drops are observed or two separate layers are formed or an emulsion is formed then the compound is insoluble.

Note: 1. If the compound is insoluble in water, solubility in ether should not be tested.

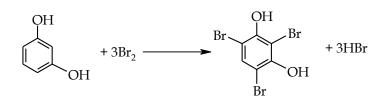
2. If the compound contains nitrogen and it is insoluble in water and in dil. HCl, it belongs to VII group. Then the solubility in 5% NaOH and in conc. H_2SO_4 should not be carried out.

Soluble in water		Insoluble in water				
Soluble in ether	Insoluble in ether	Soluble in dil. HCl	Soluble in 5% NaOH solution.	Soluble in conc. H ₂ SO ₄	Insoluble in conc. H ₂ SO ₄	Compound containing nitrogen & insoluble in water & in dil. HCl
Ι	II	III	IV	V	VI	VII
Resorcinol(s)	Urea(s) & glucose(s)	amines.(l) Ex. aniline, o(l), $m(l)$ p- toludines.(s)	Phenols, (l)carboxylic acids, (s)phenolic acids(s) <i>Ex:</i> phenol, <i>o, m, p</i> - cresols,(l) benzoic acid & salicylic acid(s)	Benzyl alcohol, (l)benzaldehy de(l), aceto- phenone,(l) methyl & ethyl benzoates(l)	Aromatic hydro- carbons & their halogen derivates. <i>Ex:</i> toluene(1), naphthalene, (s)chloro- benzene(1)	Amides & Nitro compounds <i>Ex:</i> benzamide(s) nitrobenzene (1) & <i>m</i> - dinitro- benzene(s)

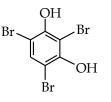
V. Identification of functional groups

Analysis of I group organic compounds: (Low molecular weight compounds)

Experiment	Observation	Inference
1. Compound is dissolved in water	Violet or purple coloured solution.	It is a phenolic compound.
+ a few drops of neutral ferric		
chloride solution.		
2. Phthalein fusion test:		
Compound in dry test tube + 1 or 2	A double coloured (green and red)	Polyhydric phenol is confirmed.
pieces of phthalic anhydride + 2	solution is formed. i.e. green	May be resorcinol.
drops of conc. H_2SO_4 . Gently heat,	fluorescence.	
cool and dilute with water. Pour it		
into NaOH solution.		


Preparation of derivative: Bromo derivative: Dissolve the compound in water taken in a conical flask. Add bromine water till the yellow colour persists. Pour the contents of the flask into a beaker of cold water. Filter the solid, wash with water and dry.

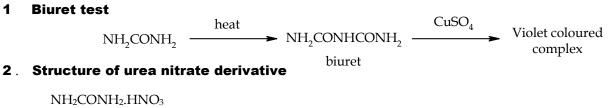
Reactions of resorcinol


1 Neutral ferric chloride test

 $6ArOH + FeCl_3 \longrightarrow [Fe(OAr)_6]^{3+}.Cl^- + 6H^+$

2. Bromination

2 Structure of bromoderivative


Analysis of II group organic compounds: (Amides and Carbohydrates)

Experiment	Observation	Inference
1. Compound + 20% NaOH	Pungent smelling gas is evolved.	May be amide.
solution. Boil.		
Expose a glass rod dipped in	Dense white fumes are formed.	May be amide
conc. HCl to the vapours.		
2. Biuret test:		
Compound in a dry test tube, heat		
till it melts and solidifies. Cool,	Violet colouration.	Urea is confirmed.
add water, a few drops NaOH		
solution and a drop of dilute		
CuSO ₄ solution.		

Preparation of derivative: Urea nitrate derivative: Dissolve urea in minimum amount of water. Add conc. nitric acid till a white crystalline solid appears. Filter and dry the solid.

Reactions of urea

1 **Biuret test**

Experiment	Observation	Inference
Tests for Carbohydrates:		
1. Compound + conc. $H_2SO_{4.}$	A black residue.	It is a carbohydrate.
2. Molisch test:		
Solution of the compound in		
water + α - naphthol in alcohol + a	A violet ring is formed.	The compound is a carbohydrate.
few drops of conc. H_2SO_4		
carefully down the sides of the		
test tube.		
3. Tollen's test:		
Solution of the compound in	A black are similate is formed	
water + Tollen's reagent and heat gently without shaking the test	A black precipitate is formed.	It is a reducing sugar.
tube.	No black precipitate.	It is a non-reducing sugar.
tube.	No black precipitate.	it is a non-reducing sugar.
4. Fehling's test:		
Solution of the compound in		
water + equal volumes of	Red precipitate is formed.	It is a reducing sugar.
Fehling's A and Fehling's B	* *	
solutions. Heat on a water bath.	No red precipitate.	It is a non-reducing sugar.
		_

Preparation of derivative: Osazone derivative: Dissolve the compound in water taken in a test tube. Add 1 ml of glacial acetic acid and 3 ml of phenyl hydrazine. Heat the contents in a beaker containing boiling water. A yellow crystalline solid is formed. Filter the solid, wash and dry.

Reactions of carbohydrate

Example: glucose

1	Tollen's test	CHO $(CHOH)_4 + Ag_2O \longrightarrow COOH$ $(CHOH)_4 + 2Ag$ $CH_2OH \qquad COOH$ $(CHOH)_4 + 2Ag$ $CH_2OH \qquad black ppt$
2	Fehling's test	
		$\begin{array}{c} \text{CHO} \\ (\text{CHOH})_4 \\ (\text{CHOH})_4 \\ (\text{CHOH})_4 \end{array} + 2\text{CuO} \longrightarrow \begin{array}{c} \text{COOH} \\ (\text{CHOH})_4 \\ (\text{CHOH})_4 \\ (\text{CHOH})_4 \end{array} + \text{Cu}_2\text{O} \\ (\text{CH}_2\text{OH}) \end{array}$

3. Structure of phenyl hydrazine derivative of glucose/fructose

$$\begin{array}{c} CHO\\ |\\ (CHOH)_4 + 3C_6H_5NHNH_2 \end{array} \xrightarrow{glacial CH_3COOH} \\ (CHOH)_4 + 3C_6H_5NHNH_2 \xrightarrow{glacial CH_3COOH} \\ (CHOH)_3 \\ (CHOH)_3 \\ (CH_2OH \\ osazone \end{array} + C_6H_5NH_2 + NH_3 + 3H_2O \\ (CHOH)_3 \\ (CHOH)_3 \\ (CH_2OH \\ osazone \\ (CHOH)_3 \\ (CH_2OH \\ osazone \\ (CHOH)_3 \\ (CHOH)_3$$

Analysis of III group organic compounds: (Amines)

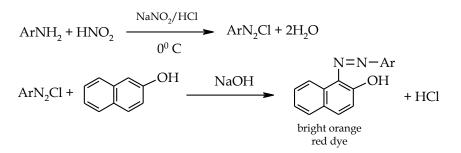
Experiment	Observation	Inference
1. 2 or 3 Drops compound in a dry test tube + 4 or 5 drops acetic anhydride, warm, cool and pour the mixture into a test tube containing cold water.	A white solid is formed.	The compound is primary or a secondary amine.
2. <i>Carbyl amine test:</i> Compound + chloroform + alcoholic KOH solution and warm.	A foul smelling compound is formed.	The compound is a primary amine.
3. <i>Diazotisation & Coupling:</i> Dissolve the compound in dil. HCl, cool in ice. Cool a solution of sodium nitrite in water. Mix the two solutions.	Pale blue or yellow coloured solution.	Primary amine is confirmed.
Add a small portion of the mixture to a solution of β -naphthol in NaOH solution.	A bright orange red dye is formed.	Primary amine is confirmed.

Preparation of derivative: Acetyl derivative: Take the compound in a dry test tube. Add a drop of glacial acetic acid and 1 ml acetic anhydride. Warm, cool and transfer the contents into ice cold water taken in a beaker. A white solid separates out. Filter, wash and dry the solid.

Reactions of primary aromatic amines

1. Acetylation

 $RNH_2 + (CH_3CO)_2CO \longrightarrow RNHCOCH_3 + CH_3COOH$ substituted


2. Carbylamine reaction

 $RNH_2 + CHCl_3 + 3KOH \longrightarrow RNC + 3KCl + 3H_2O$

isocyanide

acetamide

3. **Diazotisation and coupling**

Structure of acetyl derivative for primary amines 4.

5. Structure of benzoyl derivative for primary amines

 $R-NH-CO-C_6H_5$

Analysis of IV group organic compounds: (Phenols, Carboxylic acids and Phenolic acids)

Experiment	Observation	Inference
1. Compound + saturated	Mild effervescence takes place.	The compound is an acid.
NaHCO ₃ solution.		
	No effervescence.	The compound is a phenol.
Tests for carboxylic acids:		
2. Esterification:		
Compound + 3-4 drops of alcohol		
+ 2-3 drops of conc. H ₂ SO ₄ . Heat	Fruity odoured compound is	The compound is a carboxylic
and pour the mixture containing	formed.	acid.
water.		
3. Compound + water, shake well	Purple colouration.	Phenolic acid is confirmed.
and add neutral FeCl ₃ solution.		
	No purple colouration.	It is not a phenolic acid.

Preparation of derivative: Amide derivative for benzoic acid: Take the given compound in a dry test tube, add PCl₅, heat and cool. Add liquor ammonia drop wise carefully. A vigorous reaction takes place with the formation of a white solid. Filter, wash and dry the solid.

Bromo derivative for salicylic acid: Take the given compound in a test tube. Add bromine water and pour the contents in to a beaker containing ice cold water. Filter the white solid that separates out, wash and dry. Acetyl derivative for salicylic acid: Take the given compound in a dry test tube. Add a few drops of conc. sulphuric acid and 2 ml of acetic anhydride. Heat and pour the contents in a beaker containing ice cold water. Filter the white solid that separates out, wash and dry.

8

Reactions of carboxylic acid

1 **Reaction with NaHCO₃ solution**

$$RCOOH + NaHCO_3 \longrightarrow RCOONa + CO_2 + H_2O$$

2 Esterification

 $RCOOH + C_2H_5OH \xrightarrow{conc. H_2SO_4} RCOOC_2H_5 + H_2O$

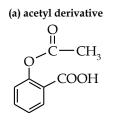
3 Structure of amide derivative of carboxylic acid

$$\stackrel{O}{R-C-NH_2}$$

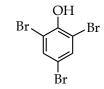
Reactions of phenolic acid

Reaction with NaHCO₃ solution 1

Ar(OH)COOH + NaHCO₃
$$\longrightarrow$$
 Ar(OH)COONa + CO₂ + H₂O


2 **Esterification**

Ar(OH)COOH +
$$C_2H_5OH \xrightarrow{\text{conc. }H_2SO_4} \text{Ar(OH)COOC}_2H_5 + H_2O$$


3 Neutral ferric chloride test

 $6Ar(OH)COOH + FeCl_3 \longrightarrow [Fe(OAr-COOH)_6]^{3+}.Cl + 6H^+$

Structure of acetyl and bromo derivatives of phenolic acid 4

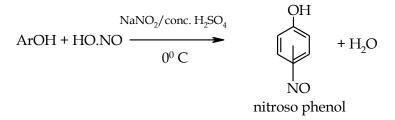
(b) bromo derivative

Experiment	Observation	Inference
Tests for phenols:		
 Compound + excess of water, shake well and add neutral FeCl₃ solution. 	Violet (or purple or green or blue) colouration.	The compound is a phenol.

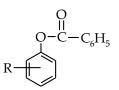
9

2. Phthalein fusion test: Compound + 1 or 2 flakes of phthalic anhydride + 2 or 3 drops of conc. H_2SO_4 . Heat till the solid melts and pour a small amount of this to NaOH solution.	Pink (or green or red or blue) colouration.	The compound is a phenol.
3. Libermann's test: Compound + a few crystals of sodium nitrite + 3 or 4 drops of conc. H_2SO_4 , warm, cool and dilute with water. Add excess of NaOH solution.	Red colouration. Green or blue colouration.	Phenol is confirmed.

Preparation of derivative: Benzoate derivative for phenol, m-cresol and p-cresol: Dissolve about 1 ml of phenol in half test tube of 5% NaOH solution taken in a conical flask. Add about 2 ml of benzoyl chloride slowly. Cork the flask and shake well for about 10 minutes. Pour the contents into cold water. Filter the solid, wash and dry.


Preparation of picrate derivative for o-cresol: Prepare a strong solution of cresol in about 3 ml of benzene and picric acid in about 3 ml of benzene separately. Mix the two solutions and evaporate to dryness. Yellow crystalline solid separates out. Filter, wash and dry.

Reactions of phenols


1 Neutral ferric chloride test

 $6ArOH + FeCl_3 \longrightarrow [Fe(OAr)_6]^{3+}.Cl^- + 6H^+$

2 Libermann's nitroso reaction:

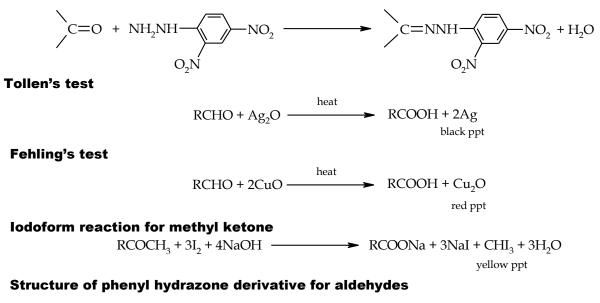
3 Structure of benzoyl derivative

Analysis of V group organic compounds: (Aromatic alcohol, Aldehydes, Ketones & Esters)

Experiment	Observation	Inference
Tests for aldehydes and ketones:		
1. 2 drops of the compound in a		
dry test tube + 1 ml of 2, 4-DNP	Yellow or orange red solid	The compound may be an
and shake well.	separates out.	aldehyde or a ketone.
.2. Schiff's test:		
Compound + Schiff's reagent.	Pink colouration.	Compound is an aldehyde.
Shake well.	No pink colouration.	Compound is a ketone.
3. Tollen's test:		
Compound + Tollen's reagent.		
Heat the test tube in a water bath	A bright silver mirror or a black	Aldehyde is confirmed.
without shaking.	precipitate.	
4. Compound + sodium	No black precipitate.	Ketone is confirmed.
nitroprusside solution + NaOH	Red colouration.	The compound is a methyl ketone
solution. Shake well.		(CH ₃ –C=O).
5. Compound + iodine solution till	Yellow solid separates out.	Methyl ketone is further
yellow colour persists + excess of		confirmed.
NaOH solution. Heat and cool.		

Preparation of derivative: Phenyl hydrazone derivative of benzaldehyde and Acetophenone: Take a few drops of the given organic compound in a dry test tube. Add a few drops of glacial acetic acid and about 2 or 3 ml phenyl hydrazine. Shake well. Yellow solid separates out. Filter, wash and dry the solid.

Reactions of aldehydes and ketones

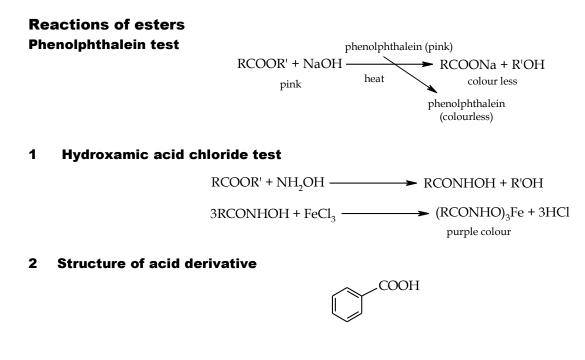

1 Reaction with 2,4-DNP

2

3

4.

5.


 $R-C=NNHC_6H_5$

6. Structure of phenyl hydrazone derivative for ketones

 $\stackrel{R'}{R-C=NNHC_6H_5}$

Experiment	Observation	Inference	
Tests for Esters:			
1. A drop of NaOH solution +	Pale pink coloured solution		
excess of water + a drop of			
phenolphthalein.			
Add two drops of the compound	Pink colour gradually disappears.	The compound is an ester.	
and warm with shaking.			
2. Hydroxamic acid test:			
Compound + alcohol + a few			
crystals hydroxyl amine	Purple colouration.	Ester is confirmed.	
hydrochloride + NaOH solution.			
Boil and cool. Acidify with excess			
of conc. HCl and add a drop of			
neutral FeCl ₃ solution.			

Preparation of derivative: Acid derivative - Saponification: Take a few drops of the given compound in a beaker. Add dilute sodium hydroxide solution (add small porcelain bits to avoid spurting). Boil until all the oily drops completely disappear and no pleasant smell persists. Cool and acidify with conc. HCl. A white solid separates out. Filter, wash and dry the solid.

Experiment	Observation	Inference
Tests for Alcohols:		
1. Compound in a <i>dry</i> test	Brisk effervescence takes	
tube + a piece of dry sodium	place and the metal dissolves.	The compound may be alcohol.
metal.		
Esterification:	A fruity smelling compound	Alcohol is confirmed.
2. Compound + few drops of	is formed.	
glacial acetic acid + 2 drops		
of conc. H ₂ SO ₄ . Warm and		
pour the contents into a		
beaker containing Na ₂ CO ₃		
solution.		

Preparation of derivative: Acid derivative - Oxidation: Take a few drops of the given organic compound in a beaker. Add 10 ml water, a pinch of sodium carbonate crystals and two spatulas of KMnO₄ crystals (add small porcelain bits to avoid spurting). Boil until the pink colour is discharged and cool. Filter *the* brown precipitate and acidify the filtrate (*if the filtrate is pink add a pinch of sodium bisulphite crystals to make it colourles*) with conc. HCl. A white solid separates out. Filter, wash and dry the solid.

Reactions of aromatic alcohols

1 Reaction with sodium metal

 $2RCH_2OH + 2Na \longrightarrow 2RCH_2ONa + H_2$

2 Esterification

 $\text{RCH}_2\text{OH} + \text{CH}_3\text{COOH} \xrightarrow[\text{heat}]{\text{conc. H}_2\text{SO}_4} \Rightarrow \text{RCH}_2\text{OCOCH}_3 + \text{H}_2\text{O}$

3. Structure of acid derivative

Analysis of VI group organic compounds: (Aromatic hydrocarbons and their Halogen derivatives):

Experiment	Observation	Inference	
Tests for aromatic hydrocarbons:			
1. Compound $+$ conc. H ₂ SO ₄ . Heat strongly without shaking.	The compound dissolves forming a homogeneous solution.	The compound is an aromatic hydrocarbon.	

2. Compound + dimethyl sulphate.	A homogenous solution.	
Heat the solution with shaking.		Aromatic hydrocarbon is
Add NH ₄ OH to the solution.	A white turbidity.	confirmed.
Teste for hele or commenced		
Tests for halogen compounds 1. Compound + alcoholic AgNO ₃		
solution. Boil and cool.	White precipitate.	The compound is a side chain
		halogen compound.
	No precipitate.	The compound is a nuclear
		halogen compound.

Preparation of derivative: Picrate derivative for naphthalene and biphenyl: Dissolve the given organic compound in 2 ml benzene in a test tube. Dissolve equal amount picric acid in 2 ml benzene in another test tube. Mix the two solutions. Filter the yellow solid and dry.

Nitro derivative for toluene: Take 2 ml of conc. H_2SO_4 in a dry test tube. Add a few drops of the given organic compound, 1 ml conc. HNO_3 and 1 ml conc. H_2SO_4 . Shake well for a few minutes and pour the contents into ice cold water. Filter the yellow solid and dry.

Nitro derivative for chlorobenzene and benzyl chloride: Take 2 ml of conc. H_2SO_4 in a dry test tube. Add a few drops of the given organic compound, 2 ml conc. HNO_3 and 2 ml conc. H_2SO_4 . Heat the contents in a water bath for about 10 - 15 minutes. Cool the content and transfer into crushed ice. Filter the yellow solid and dry.

Reactions of aromatic hydrocarbons:

$1. \ \ {\rm Reaction} \ {\rm with} \ {\rm concentrated} \ {\rm sulphuric} \ {\rm acid}$

ArH + HO.SO₃H \longrightarrow Ar.SO₃H + H₂O

2. Structure of nitro derivative of toluene:

Reactions of halogenated hydrocarbons

1 Reaction of nuclear halogen derivative with alcoholic silver nitrate:

ArCl + AgNO₃
$$\longrightarrow$$
 No precipitate

2 Reaction of side chain halogen derivative with alcoholic silver nitrate:

$$ArCH_2Cl + AgNO_3 \xrightarrow{heat} ArCH_2NO_3 + AgCl$$

alcohlolic white ppt

3 Structure of nitro derivative for nuclear halogen derivative

4. Structure of acid derivative for side chain halogen compound:

Analysis of VII group organic compounds: (Amides and Nitro compounds):

Experiment	Observation	Inference	
Tests for Amides:			
1. Compound + 20% NaOH	Pungent smelling gas is evolved.	The compound is an amide.	
solution, boil.	Dense white fumes.		
Expose a glass rod dipped in	No pungent smelling gas.	The compound is not an amide.	
conc. HCl to the fumes.		May be nitro compound.	
2. Acidify the above solution with	A white solid separates out.	Amide is confirmed.	
conc. HCl.			

Preparation of derivative: Acid derivative for amide: Take the compound in a beaker. Add 20% NaOH solution. Heat till the smell of ammonia ceases. Cool and acidify with conc. HCl. A white solid separates out. Filter and dry the solid.

Experiment	Observation	Inference	
Tests for Nitro compounds: 1. Compound + zinc dust + excess of conc. HCl, heat till the compound dissolves and filter. Cool the filtrate in ice for about 2 minutes. Prepare a solution of NaNO ₂ and cool it in ice for about 2 minutes. Mix the two solutions. Add two drops of this solution to β -naphthol in NaOH solution.	A bright orange red dye is formed.	Aromatic nitro compound is confirmed.	
2. <i>Neutral reduction:</i> Compound + 10% NH ₄ Cl solution + zinc dust. Boil for few minutes and filter into Tollen's reagent.	A black precipitate is formed.	It is an aromatic nitro compound.	
3. Compound + acetone + NaOH solution. Shake well.	Pink or violet colouration. No change.	It is dinitro compound. It is mononitro compound.	

Dinitro derivative for nitrobenzene: Take 2 ml of conc. H_2SO_4 in a dry test tube. Add a few drops of the given organic compound, 2 ml conc. HNO_3 and 2 ml conc. H_2SO_4 . Heat the contents in a water bath for about five minutes. Cool and pour the mixture into ice water. Filter the yellow solid and dry.

Reactions of amides

1 Hydrolysis

 $\text{RCONH}_2 \xrightarrow{1.20\% \text{ NaOH, heat}} \text{RCOOH} + \text{NH}_3 + \text{HCl}$ 2. HCl, acidification

2 Structure of acid derivative

Reactions of mononitro compounds

1 Reduction with Zn/dil. HCl

$$ArNO_2 + 6[H] \xrightarrow{Zn/HCl} ArNH_2 + 2H_2O$$

Neutral reduction:

$$ArNO_{2} + 4[H] \xrightarrow{Zn/NH_{4}Cl} ArNHOH + H_{2}O$$

$$aryl substitued$$

$$hydroxyl amine$$

$$ArNHOH + 2[Ag(NH_{3})_{2}]OH \xrightarrow{RNO} RNO + 2Ag + 4NH_{3} + 2H_{2}O$$

$$black ppt$$

Structure of dinitro derivative of mononitro compound:

2 Structure of amino derivative of dinitro compound:

Physical constants

Solids		Liqui	ids
1. Resorcinol	110 °C	1. Aniline	184 °C
2. Glucose	144 °C	2. Ortho toludine	199 °C
3. Para toludine	44 °C	3. Meta toludine	202 °C
4. Urea	132 °C	4. Phenol	182 °C
5. Benzoic acid	121 °C	5. Ortho cresol	203 °C
6. Salicylic acid	158 °C	6. Meta cresol	202 °C
7. Naphthalene	80 °C	7. Para cresol	203 °C
8. Diphenyl	70 °C	8. Benzaldehyde	179 °C
9. Benzamide	128 °C	9. Acetophenone	202 °C
10. m-Dinitro benzene	90 °C	10. Benzyl alcohol	205 °C
		11. Ethyl benzoate	213 °C
		12. Toluene	110 °C
		13. Chlorobenzene	132 °C
		14. Nitro benzene	210 °C

MODEL PROCEDURE Systematic identification of the given organic compound

I. Preliminary observations

State : liquid Colour: colourless

Odour: Smell of Bitter almonds

Experiment	Observation	Inference		
Ignition test:	The compound burns with a sooty	The compound is aromatic.		
A small amount of the organic	flame.			
compound is ignited on a nickel				
spatula.				
Test for unsaturation:				
1. Compound + $KMnO_4$ solution.	Pink colour is discharged	The compound is reactive or		
Shaken well		unsaturated.		
2. Compound + bromine water.	Orange red colour is discharged	The compound is reactive or		
Shaken well.		unsaturated.		

II. Determination of boiling point of the given liquid

The observed boiling point $= 174^{\circ}C$

3% Correction = $5.22 \ ^{\circ}C$

The boiling point of the liquid = $174 \text{ }^{\circ}\text{C} + 5.22 \text{ }^{\circ}\text{C} = 179.22 \text{ }^{\circ}\text{C}$

III. Detection of elements: Lassaigne's test: (preparation of sodium fusion extract)

A small piece of dry sodium metal is introduced in a fusion tube. It is heated gently until the solid melts into silvery white. It is cooled. A drop of the organic compound is added, heated gradually and strongly until the tube became red hot. It is then plunged into 5 ml distilled water taken in a mortar. Two such fusions are carried out. The contents are grinded with a pestle, transferred into a beaker, heated and filtered. The filtrate is called sodium fusion extract.

Experiment	Observation	Inference
Test for nitrogen:		
1 ml of the solution + a few	No green or blue colouration.	Nitrogen is absent.
crystals of FeSO ₄ . Boiled, cooled		
and acidified with dil. H_2SO_4 .		
Test for halogen:		
1 ml of the solution + conc.		
HNO ₃ , boiled, cooled and treated	No white or pale yellow	Halogen is absent.
with AgNO ₃ solution.	precipitate.	
Test for sulphur:		
1 ml solution + dil. Acetic acid +		
lead acetate solutions.	No black precipitate	Sulphur is absent.

IV. Solubility test

Water	Water			conc. H ₂ SO ₄		Compound with N not
soluble & ether soluble	soluble & ether insoluble	dil. HCl	5% NaOH	soluble	insoluble	Compound with N not belonging upto groups III
Ι	II	III	IV	\mathbf{V}	VI	VII
_	_	_	_	+	×	×

The given organic compound forms a precipitate with conc. H_2SO_4 . Hence it is soluble conc. H_2SO_4 and belongs to V group. The compound may be an aldehyde, a ketone, an ester or an alcohol. **V. Functional group identification**

Experiment	Observation	Inference
Tests for aldehydes and ketones:		
1. 2 drops of the compound in a dry		
test tube + 1 ml of 2, 4-DNP and	Yellow or orange red solid separates	The compound may be an
shake well.	out.	aldehyde or a ketone.
.2. Schiff's test:		-
Compound + Schiff's reagent. Shake	Pink colouration.	Compound is an aldehyde.
well.	No pink colouration.	Compound is a ketone.
3. Tollen's test:		
Compound + Tollen's reagent. Heat		
the test tube in a water bath without	A bright silver mirror or a black	Aldehyde is confirmed.
shaking.	precipitate.	
	•	

VI. Preparation of derivative: *Preparation of derivative: Phenyl hydrazone derivative of benzaldehyde* Take a few drops of the given organic compound in a dry test tube. Add a few drops of glacial acetic acid and about 2 or 3 ml phenyl hydrazine. Shake well. Yellow solid separates out. Filter, wash and dry the solid.

Reactions of aldehydes and ketones

Boiling point: 179.22°C.

1 Reaction with 2,4-DNP $\begin{array}{c} \begin{array}{c} \begin{array}{c} C=O + NH_2NH \longrightarrow NO_2 \longrightarrow C=NNH \longrightarrow NO_2 + H_2O \end{array} \\ \hline \\ 2 \text{ Tollen's test} & O_2N & O_2N & O_2N \end{array} \\ \hline \\ RCHO + Ag_2O \longrightarrow RCOOH + 2Ag \\ \hline \\ Black ppt \end{array} \\ \hline \\ 3 \text{ Fehling's test} & RCOOH + 2CuO \longrightarrow RCOOH + Cu_2O \\ \hline \\ red ppt \end{array} \\ \hline \\ 4. \text{ Structure of phenyl hydrazone derivative for aldehydes} \\ \hline \\ H \\ R-C=NNHC_6H_5 \\ \hline \\ \text{Report : The given organic compound is an aromatic aldehyde} \end{array}$